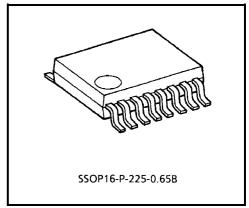
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB6524FN

DC MOTOR DUAL FULL BRIDGE DRIVER (H-SWITCH)

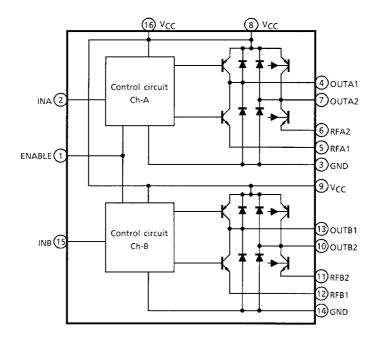
The TB6524FN is a bridge driver most suitable for switching between normal rotation and reverse rotation and can control three modes, normal rotation, reverse rotation, and stop. The driver is capable of handling output current of 100 mA. Fixed current operation is also available as the control method.

FEATURES


• Operating voltage range : $V_{CC} = 1.5 \sim 7.0 \text{ V}$

(normal operation) $V_{CC} = 2.0 \sim 7.0 \ V$ (fixed current operation)

• Output current : IOUT = 100 mA


Built-in diode for absorbing counter electromotive force

Built-in enable terminal

Weight: 0.07 g (Typ.)

BLOCK DIAGRAM

1

PIN FUNCTION

PIN No.	SYMBOL	DESCRIPTION
1	ENABLE	Enable signal input, Hi : Enabled, Low : All output OFF
2	INA	Channel A input signal terminal
3	GND	Ground terminal
4	OUTA1	Channel A output terminal
5	RFA1	Channel A: Output current is set by external resistance.
6	RFA2	Channel A: Output current is set by external resistance.
7	OUTA2	Channel A output terminal
8	V _{CC}	Power supply
9	V _{CC}	Power supply
10	OUTB2	Channel B output terminal
11	RFB2	Channel B : Output current is set by external resistance.
12	RFB1	Channel B : Output current is set by external resistance.
13	OUTB1	Channel B output terminal
14	GND	Ground terminal
15	INB	Channel B input signal terminal
16	V _{CC}	Logic power supply

⁽⁸⁾ V_{CC}, (9) V_{CC}, (16) V_{CC}, (3) GND and (14) GND must be connected to V_{CC} or GND.

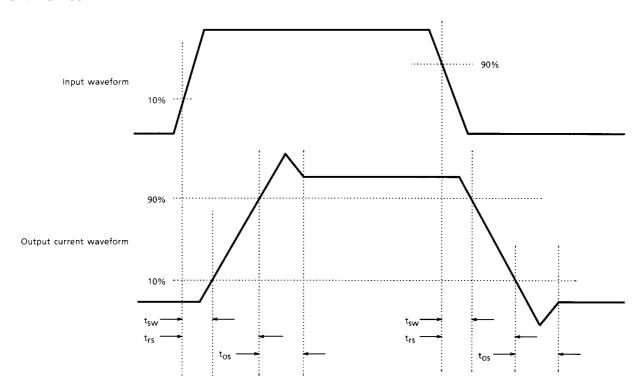
FUNCTION

INPUT			OUTPUT				
INA	INB	ENABLE	OUTA1	OUTA2	OUTB1	OUTB2	
Н	Н	Н	Н	L	Н	L	
L	L	Н	L	Н	L	Н	
Н	L	Н	Н	L	L	Н	
L	Н	Н	L	Н	Н	L	
H/L	H/L	Ĺ	8	8	8	∞	

∞: High impedance

Note: Before you change "Enable" to Low from High on the operating, change to Low both "INA" and "INB".

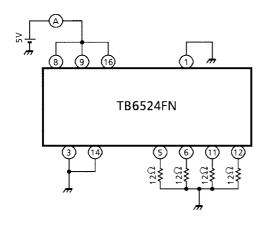
MAXIMUM RATING (Ta = 25°C)

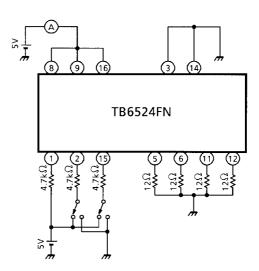

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	V _{CC} (Max)	8	٧
Output Current	I _{OUT}	0.1	Α
Power Dissipation (Tc = 25°C)	PD	0.5 (Note)	W
Operating Temperature	T _{opr}	− 30 ~ 75	°C
Storage Temperature	T _{stg}	−55 ~ 150	°C

Note: IC single unit

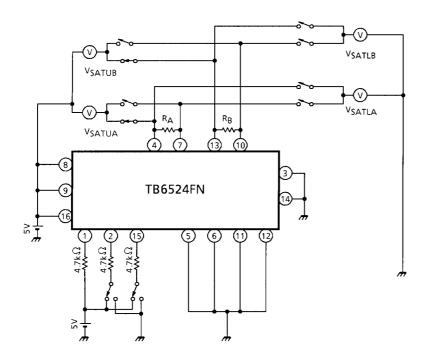
ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{CC} = 5 V)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	I _{CC1}	1	Standby (ENABLE OFF)	_	0.1	1.0	μΑ
Power Supply Current	I _{CC2}	2	Normal / reverse (for 2 channels) output OPEN	_	32	45	mA
	Upper V _{SAT U-1}	3	I _{OUT} = 100 mA at normal / reverse	_	0.2	0.3	V
Output Saturation Voltage	Lower V _{SAT L-1}		I _{OUT} = 100 mA at normal / reverse		0.2	0.3	
Output Saturation Voltage	Upper V _{SAT U-2}		I _{OUT} = 50 mA at normal / reverse		0.1	0.25	
	Lower V _{SAT L-2}		I _{OUT} = 50 mA at normal / reverse	_	0.1	0.25	
Setting Output Current	l _{OUT} c	4	12 Ω between RFA1, 2 / RFB1, and 2–GND Load 7.5 Ω	55	65	75	mA
Output Current V _{CC} Dependency	$\frac{\Delta I_{OUTC}}{\Delta V_{CC}}$	5	$I_{OUT~C}$ = 10 ~ 100 mA (R _f : 8 Ω, 80 Ω) V _{CC} = 2.0 ~ 7.0 V Load 5 Ω	-8		5	%
Output Current Switching	t _{sw}		560 μH (7.5 Ω) R _f = 16 Ω	_	1.0	_	μs
Duration	t _{rs}	_		_	6.0	_	
Overshoot Duration	tos			_	2.0	_	
Input Voltage	V_{IH}	- 6	INA, INB, ENABLE	1.5	_	V _{CC}	· v
input voltage	V_{IL}			0	_	0.3	
Input Current	l _{in}	7	Sync V_{IN} = 5.0 V Input terminal 4.7 k Ω	_	430	550	μΑ
Output Transistor Leak	Upper I _{LU}	- 8	V _L = 7 V			30	- μΑ
Current	Lower I _{LL}	0	VL - 7 V	_	_	30	

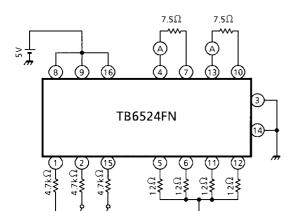

 $t_{\text{sw}},\,t_{\text{rs}},\,t_{\text{os}}$



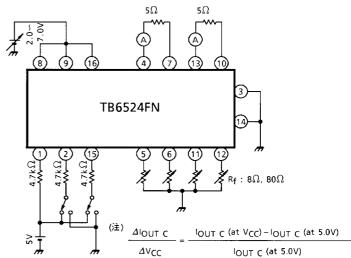
5 2001-06-13


TEST CIRCUIT 1 I_{CC1}

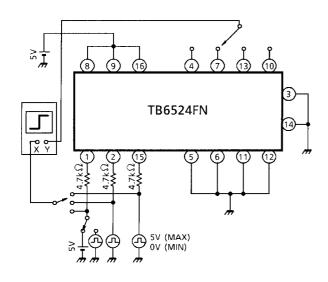
TEST CIRCUIT 2 I_{CC2}

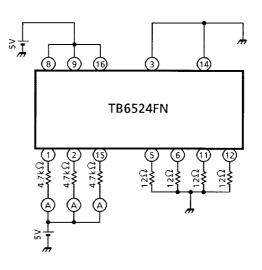


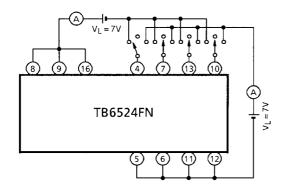
TEST CIRCUIT 3 $V_{SAT\ U-1,2}$ / $V_{SAT\ L-1,2}$

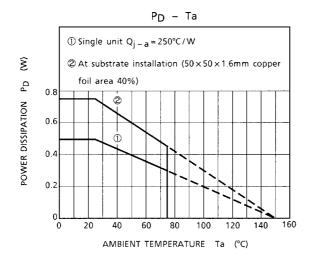


Note: Set R_A and R_B so that I_{OUT} = 50mA and 100mA is satisfied.


TEST CIRCUIT 4 I_{OUT C}

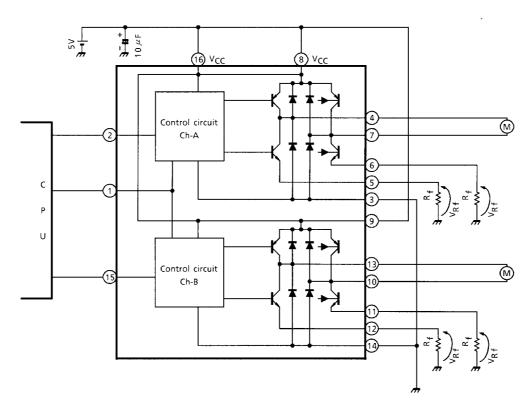

TEST CIRCUIT 5 ΔI_{OUT C}


TEST CIRCUIT 6 VIH / VIL



TEST CIRCUIT 7 Iin

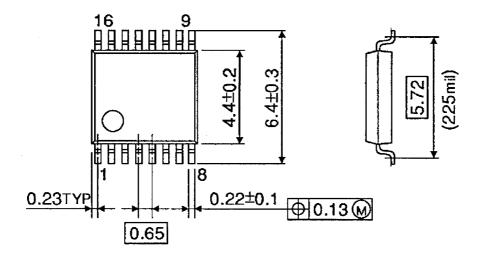
TEST CIRCUIT 8 ILU/ILL

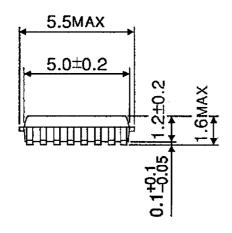


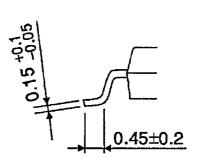
2001-06-13

8

APPLICATION CIRCUIT


V_{Rf}: 0.78V (TYP.) R_f: Set resistance


Note: Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.


PACKAGE DIMENSIONS

SSOP16-P-225-0.65B

Unit: mm

Weight: 0.07 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.